Davenport constant with weights

نویسندگان

  • Pingzhi Yuan
  • Xiangneng Zeng
چکیده

For the cyclic group G = Z/nZ and any non-empty A ∈ Z. We define the Davenport constant of G with weight A, denoted by DA(n), to be the least natural number k such that for any sequence (x1, · · · , xk) with xi ∈ G, there exists a non-empty subsequence (xj1, · · · , xjl) and a1, · · · , al ∈ A such that ∑l i=1 aixji = 0. Similarly, we define the constant EA(n) to be the least t ∈ N such that for all sequences (x1, · · · , xt) with xi ∈ G, there exist indices j1, · · · , jn ∈ N, 1 ≤ j1 < · · · < jn ≤ t, and θ1, · · · , θn ∈ A with ∑n i=1 θixji = 0. In the present paper, we show that EA(n) = DA(n)+n−1. This solve the problem raised by Adhikari and Rath [3], Adhikari and Chen [2], Thangadurai [12] and Griffiths [10]. MSC: 11B50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-wise and constrained fully weighted Davenport constants and interactions with coding theory

We consider two families of weighted zero-sum constant for finite abelian groups. For a finite abelian group (G,+), a set of weights W ⊂ Z, and an integral parameter m, the m-wise Davenport constant with weights W is the smallest integer n such that each sequence over G of length n has at least m disjoint zero-subsums with weights W . And, for an integral parameter d, the d-constrained Davenpor...

متن کامل

Remarks on the plus-minus weighted Davenport constant

For (G,+) a finite abelian group the plus-minus weighted Davenport constant, denoted D±(G), is the smallest l such that each sequence g1 . . . gl over G has a weighted zero-subsum with weights +1 and −1, i.e., there is a non-empty subset I ⊂ {1, . . . , l} such that ∑ i∈I aigi = 0 for ai ∈ {+1,−1}. We present new bounds for this constant, mainly lower bounds, and also obtain the exact value of ...

متن کامل

Some zero-sum constants with weights

For an abelian group G, the Davenport constant D(G) is defined to be the smallest natural number k such that any sequence of k elements in G has a non-empty subsequence whose sum is zero (the identity element). Motivated by some recent developments around the notion of Davenport constant with weights, we study them in some basic cases. We also define a new combinatorial invariant related to (Z/...

متن کامل

On Bounds for Two Davenport-type Constants

Let G be an additive abelian group of finite order n and let A be a non-empty set of integers. The Davenport constant of G with weight A, DA(G), is the smallest k ∈ Z+ such that for any sequence x1, . . . , xk of elements in G, there exists a nonempty subsequence xj1 , . . . , xjr and corresponding weights a1, . . . , ar ∈ A such that �r i=1 aixji = 0. Similarly, EA(G) is the smallest positive ...

متن کامل

Davenport constant with weights and some related questions, II

Let n ∈ N and let A ⊆ Z/nZ be such that A does not contain 0 and it is non–empty. Generalizing a well known constant, EA(n) is defined to be the least t ∈ N such that for all sequences (x1, . . . , xt) ∈ Z, there exist indices j1, . . . , jn ∈ N, 1 ≤ j1 < · · · < jn ≤ t, and (θ1, · · · ,θn) ∈ A with ∑n i=1 θixji ≡ 0 (mod n). Similarly, for any such set A, we define the Davenport Constant of Z/n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010